

Erlang: Practical Functional
Programming

Elixir Taiwan

May 16, 2016

Jake Morrison <jake@cogini.com>

Origins

Designed by Ericsson as a high level language
to be used to build highly reliable telecom
systems.

Erlang is functional for practical, not academic
reasons.

Telephone switches with 10K
simultaneous calls / ATM networking
Failure handling one customer should not affect other

customers

Degrade gracefully when overloaded

Hardware failure should not stop the system

– Redundant hardware, two separate CPU boards

– Share call state between multiple servers

There is never a good time to do a software update

– Hot code updates

Monitoring, management and production debugging

Today

 "Internet scale" applications such as WhatsApp
 Financial services, e.g. high frequency trading
 Embedded systems

What is Erlang?

Languages

Erlang

Elixir

Lisp Flavoured Erlang

Prolog

Virtual Machine

 Similar model to Java
 Implements all the "hard stuff" needed to build

scalable systems, e.g. networking, lightweight
processes and message passing, so
programmers can focus on the high level
functionality of of the systems they are
building.

OTP Framework

Building blocks for

– Network services

– Process supervision

– Finite state machines

– Event handling

Tools

– Monitoring

– Debugging

Philosophy

Erlang was designed for writing concurrent
programs that 'run forever' - Joe Armstrong

Let it fail. Have another process deal with it.

Fault tolerance requires at least *two* computers.

Handling shared state

If I don't have shared state, then I don't have to replicate it

Keep state in lightweight processes that don't talk with each other

Separate state from processing

Resources

Concurrent processing

Limit to system capacity

Libraries

No state, pure functional calls

Centralize handling of persistent state

Internal replicated in-memory database

Natural Concurrency

One process for each truly independent activity

Not a web server that can handle 1M simultaneous
requests

1M web servers, each handling one request

The world is asynchronous

Components communicate by sending messages to
each other

Eventual consistency

Let it fail
It's ok if we can't handle a request, as long as we behave reasonably

Pattern matching

If you see something wrong, log it and go on

Invalid input

Bugs = run time assertions

Overload

Preserve resources to give good quality of service

Pull based handling

Supervisors

The solution is at a higher level than the problem

Logging

Take action

Get enough information to diagnose the problem

Production monitoring, maintenance
and debugging

Crash reports with enough information to replicate
and fix the problem

Full call stack

Tracing of live systems

Hot code updates

Next generation web apps

Requests are independent... unless they are
not

• How do we efficiently manage shared state?

• Peer to peer communication

Next generation web apps

Real time web
• Web sockets

• Push messaging

• Mobile and web chat

• Mobile APIs

• Location based services

Next generation web apps

Single platform for everything
• Public web

• Back end admin

• Mobile APIs

• Gateway to 3rd party services
– Payment gateway
– Telephony systems

Next generation web apps

Scalability (= cluster)

Efficiency

Reliability

Manageability

The contenders
Traditional web: PHP, Ruby on Rails

Easy to program

Lots of libraries

Poor scalability / concurrency

New generation: Node.js, Golang

Better process model

No management tools

Low level

Erlang / Elixir

Designed to scale

Easy development

Slightly mind bending

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

